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ABSTRACT

The United States Army, Navy, Air Force, and Marine Corps have jointly
sponsored and participated in the development of a Shock Index (SI) for
highway transportation. A numerical SI associated with a particular
vehicle-load combination can now be determined at a low cost by applica-
tion of simple static field measurements. The SI provides classification
for vehicle-load combinations as regards probability of shocks trans-
mitted to the cargo during highway shipments.

This work represents the first known attempt to develop a procedure for
classifying highway cargo vehicles on the basis of their rough riding
characteristics. The procedure cannot be used for predicting the expected
highway shock environment but can be used for classification as regards
relative magnitude of shock.
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I. INTRODUCTION

In 1967 representatives of the United States Army, Navy, Air Force, and
Marine Corps agreed that it should be possible to establish shock indices
that would be representative of the cargo environment for the various
transport modes. The Services formed a Steering Committee to intitate
and guide the development of a highway shock index. The highway mode
was selected because of the relative ease in controlling the environment
and related variables.

As an initial step the Steering and Advisory Committee let a $53, 000
contract to General Testing, Inc., Springfield, Virginia, to determine
and develop a shock index equation that could be used to classify highway
cargo vehicles in terms of vehicle shock to the cargo. In addition, and

in conjunction with the General Testing, Inc. contract, a second $13, 000
contract was let by the joint services committee to J. A. Johnson, Inc.,
Short Hills, New Jersey, an independent testing organization, to check
and verify the General Testing, Inc., project objective. General Testing,
Inc., ran a comprehensive group of static and dynamic shock evaluation
tests using five classes of cargo trucks.

General Testing, Inc., laboratories released their final report, Develop-
ment of a Shock Index Classification for Highway Cargo Vehicles, dated
16 April 1971, As described in the report "a set of semi-empirical rela-
tionships have been developed to equate the performance of the vehicle/
cargo with the significant variables affecting the ride.'" Conclusions, as
presented by General Testing, Inc., are that 'the SI equation developed
under this contract is the result of an approach to a complex problem. In
short, this work is not the ultimate answer to the problem of cargo ride;
instead, it represents a foundation on which to build a firm set of require-
ments for the safe transportability of all cargo. "

The bulk of General Testing, Inc., work concerned a controlled labora-
tory test arrangement. J, A, Johnson, Inc., was tasked to validate the
feasibility of the General Testing, Inc., classification procedure and test
on public roads to establish the accuracy of method in a practical over-
the-road environment. Johnson's work concluded that a shock index
classification is both feasible and needed by the military community, but
that more engineering expertise is required to improve accuracy prior to
adoption of the classification procedure.

Accordingly, Military Traffic Management Command Transportation Engi-
neering Agency (MTMCTEA) initiated a comprehensive shock index field
test program using Fort Eustis facilities, military equipment, and per-
sonnel to assist in obtaining program objectives by developing a practical
test to obtain usable impact data. A military 5-ton M52 tandem tractor,
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in combination with a lc-ton M127 tandem trailer, was used for this phase
of the test program. Using military personnel and equipment consider-
ably reduced research costs and assured technical control of the field
work, As a result of these tests a procedure for testing commercial
cargo trucks was developed.

During July 1973, limited field tests were initiated on the first of three
leased commercial cargo trucks; all field work was completed by April
1974, Support for these tests was provided by the US Army Transporta-
tion Center and Fort Eustis, Planning, supervision of tests, analyses,
and development of concepts and application were performed by
MTMCTEA engineers

The detailed procedure on how to determine the shock index for a typical
highway cargo truck is contained in this report.

II. OBJECTIVES

l, To conduct static loading and dynamic impact tests on a representa-
tive series of commercial highway cargo trucks to obtain data for deter-
mining the shock force transmitted into the cargo bed.

2. To analyze the static and dynamic data collected from the tests and

to develop a method from the results for deter mining the shock index for
commercial cargo trucks.

IoI. CONCLUSIONS

l., A practical, graphic method, which utilizes the planned payload(s)
and vehicle payload axle spring rate, has been developed for determining
the shock index of commercial cargo trucks.

2. For a two-axle cargo truck (truck Type I), the roughest ride on a
truck cargo bed was over the rear axle. For a truck-tractor-semitrailer
combination (truck Types II and III), the roughest ride occurred either
over the rear axles of the trailer or over the tractor rear axles depend-
ing on which axle had the higher payload spring rate.

3. The test vehicles represented the low, middle, and high payload
rates for typical trucks used in the transportation industry.

4. The tests showed that of the three major variables, percent of maxi-
mum payload, tire pressure, and speed, percent of maximum payload



has the most effect on shock index. Tire pressure, in the practical
range, and speed caused relatively minor changes.,

5. For the highway mode vertical accelerations (impact forces) are gen-
erally greater than lateral or longitudinal accelerations and are a major
factor as regards potential cargo damage.

6. High, erratic shock values occurred with very light or maximum pay-
loads. The most erratic results occurred over the fifth wheel area.

7. While under full or minimum load conditions, independent of load
location, tire pressure, or truck speed, vertical accelerations or impact
forces exceediny 10g were recorded on several occasions by each of the
forward, middle, and rear in.pact registers, when the test vehicles ran
over the test bumps,

8. The shock index graph may be employed to define practical shock
parameters for selection of cargo trucks based on riding performance
and for preparing cargo truck specifications or standards.

IV, GENERAL

The shock index program was initiated and conducted to obtain practical
research information on the impact forces induced upon Government

items transported by cargo trucks in order ithat the Department of Defense
would have reference criteria with which to coordinate cargo vehicle com-
patibility with materiel load characteristics.

A systematic testing approach was held constant throughout the project to
produce data output representative of a highway transportation shock
environment. Repeatability of shock values was considered of prime im-
portance for the various combinations of test variables.

Well-trained military personnel to operate the test support equipment
were provided by the US Army Transportation Center and Fort Eustis.
Their skills and knowledge greatly reduced research costs and assured
MTMCTEA engineers complete technical control of the field work during
several hundred static and dynamic runs on each vehicle.

Late model 1972 and 1973 truck and truck-tractor-semitrailer combina-
tions were contracted from a national leasing agency. The rented test
vehicles were considered to be most representative of cargo trucks used
to transport Government material and, therefore, would produce the de-
sired collective shock data.




The initial phases of the Shock and Vibration Analysis Program are
described in MTMTS Interim Report 73-35, Joint Services Shock Index
Project.-!-/ The preliminary testing performed during the original aspects
of the study was jointly financed by the United States Army, Navy, Air
Force, and Marine Corps. The joint services were in agreement that
establishing the shock forces on the cargo bed of highway trucks could
eventually result in a significant savings of materiel replacement and
packing costs. Preliminary testing performed during the originalaspects
of the study established the direction of approach as to test environment
and required instrumentation. The original efforts served as a guide in
determining methods to obtain results as presented in this report on the
comprehensive grcup of values from the static and dynamic shock and
evaluation tests,

The testing of five corimercial cargo truck combinations was originally
planned; however, because of a funding cut, only three vehicles were
tested, and these were considered to be representative of the average
trucks used by the transportation industry. Testing a truck-tractor-
semitrailer combination equipped with air-ride suspensio.u and loaded
with typical household goods would increase the shock index evaluation in
defining the impact forces transmitted to caryo.

The work completed to date has resulted inthe development of a procedure
for determining the shock index of highway cargo vehicles and defined the
shock environment on the bed of typical highway cargo trucks. This
information can be used to establish cargo truck specifications, or stan-
dards, riding performance, packaging standards, and restraint require-
ments for cargo.

V. DESCRIPTION OF TEST PROCEDURES

TEST VEHICLES

The test vehicles consisted uf the following commercial truck and truck-
tractor-semitrailer combinations., Rated weights and gross loaded test
weights are shown in Table I. The vehicles were tested in the order
shown.

Truck Type I

1973 18-foot flatbed stake truck with dual rear wheels, Figure 1.

-!-/MTMTS Interim Report 73-35, Joint Services Shock Index Project, pre-
pared by the Transportation Engineering Agency, December 1973,
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TABLE I
RATED WEIGHTS PER TRUCK TYPES (IN POUNDS)

Truck or /
4 Tractor Tracto Tractor (GAWR)* ~emitrailer Gross Payload
__Type (GVW}Q/ (GCW)E Front Rear GVW Rating Test Wei
I 23,000 NA NA NA NA 12,520
II 35,000 80, 000 12, 000 23,000 65, 500 39,890
117 28, 000 80, 000 9,000 19, 040 30,950 22,635

i—;GAWR = Gross axle weight rating = Loaded weight on a single axle.
="GVW = Gross vehicle weight = Total weight of vehicle (min equip rating)

plus weight of driver and passengers and fuel, plus weight of payload.
2/GCW = Gross combined weight = Gross vehicle weight (GVW) plus weight
of semitrailer plus weight of payload.

Figure 1. Truck Type L

Truck Type II

1973 truck-tractor-semitrailer combination: three-axle tractor,
two-axle, 40-foot, flatbed, semitrailer, Figure 2.
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Figure 2. Truck Type II With Full Load.

Truck Type III

1973 truck-tractor-semitrailer combination: two-axle tractor, one-
axle, 30-foot, flatbed, semitrailer, Figure 3.

STATIC TEST

The test trucks delivered
to Fort Eustis by the
leasing agency were
inspected for structural
defects before accept-
ance by the project test
officer.

Static testing started
for each truck with load-
ing concrete blocks on
the cargo bed in the
positions that would be
Figure 3. Truck Type III With Full Load. maintained throughout
all phases of the static
and dynamic tests. Truck axle weights were recorded from empty to full
load for each increment load pattern. Each concrete block was weighed
and the weight stenciled on the block for identification throughout the tests.
The physical dimensions of the truck were measured and used along with
the block weights to calculate wheel-to-surface vertical force reactions
using moments about an axle.
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The purpose of the static test was to develop the spring rates of tires,
suspension system, and cargo bed bending for each of the test vehicles,
The trucks were repeatedly loaded and unloaded in increments of the
limit load value, while vertical deflection measurements were recorded
for the tires, springs, and cargo bed. Tire pressures were changed to
determine the effect of changes in the practical range on the combined
spring rate.

The loads, converted to single-axle loads in pounds versus the combined
vertical deflection in inclies of all tires and springs on an axle, defined
the spring constants.

It was anticipated that a procedure could be developed for relating these
spring constants to the dynamic ride characteristics of the test vehicles.

The following test procedure for the three vehicles was used:

l. Static testing of the vehicles was conducted on a large, paved
area. Each truck was parked on the same general surface sc that static
physical measurements for each cargo bed could be measured from a
common base.

2. The blocks were removed in equal weight increments until all the
load had been removed from the vehicle.

3. The venicle was then reloaded in the same weight increments,
completing one unloading and loading cycle. Figure 4 illustrates the un-
loading and loading cycles followed for truck Type II at the various tire
pressures,

4, Vertical deflection measurements were made at the front and
rear axles and center of the load.

The following information was recorded for each test vehicle. (Tire,
spring, and frame deflection measurements were repeated for each load-
ing cycle):

1, The payload and tire pressure,

2, The location of the axles, loads, center of payload, and fifth
vheel for the truck and truck-tractor-semitrailer combinations.

3. Vertical distance from the pavement to the rear axle of two-axle
truck-tractors and semitrailers at the longitudinal center line of the
vehicles (tire deflections) (Figure 5),




4. The vertical dis-
tance from the pavement to

FULL LOAD
:::lh{:lllm’! 104D 0L a point on the frame above
;::g..'l ONE-FOURTH LOAD ;l‘:"“ z: t: the truck or tractor and
AXLE o PRESSURE soLs semitrailer rear springs
SPANG ::E S%!?‘i'uk?." “wu oS08
m.lu_;“"us LOAD and directly over the axles
A1 LB at the longitudinal center
line of thr. vehicle (com-
FULL LOAD bined tire and spring de-
Er s, 10A T :: i fiections for truck or truck-
TRAILER NETOWATHLOAD | ] yime 0o tractor-semitrailer com-
FRAME ==[l.'.°o‘:"u LOAD PRESSURE 50 L8 bi .
ONEHALF LOAD e o ination).
THREE-FOURTH LOAD
FULL LOAD
5. The vertical dis-
tance from the pavernent to
FULL LOAD .
“THREE FOURTHS LOAD n a point on the frame of the
TRALLER ONE-HALF LOAD VARIED 00 vehicle at the center of the
Tanogw | | hE.FOURTH LOAD TIRE 608 : :
AXLE ONE-FOURTH LOAD PRESSURE :: t: payload (combined tire,
SPRING ONE-HALF LOAD i =
T tOARIHS. LOAD spring, and frame deflec
FULL LOAD tion at center of the pay-

load) (Figure 6).
Figure 4. Static Test Procedure for Truck
Type II. From the results
of the static tests, a spring
constant was determined based on the combined vertical deflection of the
tires and the suspension system for each of the single-axle or tandem-axle
units on the truck and truck-tractors and semitrailers. All spring con-
stants, hereafter called payload spring rates, are based on single-axle
payloads.

TEST SITE

The truck dynamic test runs were conducted on a Fort Eustis, Virginia,
secondary gravel road extending parallel to Bailey Creek for 0.9 mile
through an isolated a-ea in the northwest section of the reservation
(Figures 7 and 8).

Fort Eustis Facilities Engineering surface-graded the road, prepared
truck bypasses and turnarounds, installed the steel pipe and concrete
bumps, and, in general, completely reworked the on-post secondary road
into an excellent cargo truck dynamic test site.

Because the requirement was to produce and repeat constant shock forces
into the cargo bed of the test vehicles over a series of set runs, it was
necessary to construct standard, uniform bumps on the test road.

8



Figure 5. Measurement of Tire Deflection. Static Test.

o e
Ly

Figure 6. Measurement of Truck Frame Deflection,
Static Test.
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Ten-inch-diameter steel ducts were embedded in separate concrete founda-
tions at the far ends of the test run, so that the large vehicles ccauid obtain
a maximum steady speed before passing over the bumps. Three inches of
the steel duct were left protruding across the width of the concrete pads
(Figure 9). The steel duct, jutting up from a flat foundation, provided 12
feet of uniform bump along the longitudinal axis of the pipe and, lying per-
pendicular to the direction of travel, cxerted an impact force on the truck
tires as they passed over the duct. The bumps produced the desired
impact force into the truck bed through the tires and springs.

INSTRUMENTATION

Three Impact Register Company, RM-3W Mechanical Accelerometers,
Figure 10, were used to record shock values delivered to the bed of the
cargo trucks, The accelerometers were securly fastened to the cargo
beds of the trucks in three locations, On the 18-foot flatbed truck Type I,
they were located at the following positions: the first register was placed
aft of the bulkhead, the second register was placed midspan on the bed
between the forward accelerometer location and the rear axle, and the
third register was placed over the rear axle. On both truck-tractor-
semitrailer combinations, the forward accelerometer was placed over the
5th wheel, the aft accelerometer was anchored midway over the trailer
axle(s), and the middle register was placed at one-half the distance from
the 5th wheel to the rear trailer axle(s).

The three individual units gave accuraite readings to within 6 percent of
full-scale deflection, To obtain factual readings over the anticipated g

range, the instruments were calibrated by the manufacturers to within 2
percent of full scale just prior to testing,

Each accelerometer recorded a permanent, legible record on wax-coated
strip charts of the vertical, lateral, and longitudinal g impact forces
sensed at the three surface locations where the instruments are attached
to the truck bed.

Within the accelerometer, the three-way data chart is driven by a spring-
powered, 30-day clock motor that rotates the recording paper around an
actuating roller. Data are registered on the wax-coated surface by a
stylus exerting pressure on the paper; the paper was advanced after the
test vehicle had traversed the bump so that the marks made by the stylus
could be separated,

The accelerometers recorded directly ing forces. Ranges set for thethree-
way recorders were T 10g vertically, t5glaterally, and t15glongitudinally.,
Only the longest side of the stylus printout was read as the shock value; only
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Figure 10. Impact Register Bolted to Cargo Bed.

vertical forces were considered as a serious source of potential cargo
damage and were therefore used for formulating the shock index. The
vertical axis indicates the amount of up-and-down force transmitted to the
cargo. This force is severe when one considers that the cargo can leave
the truck bed for any force in excess of lg.

The mechanical accelerometers recorded reliable g-force readouts
created by the test vehicle suspension system and provided a sound founda-
tion for calculating shock environmental profiles. Typical test accelero-
meter readouts for truck Type Il are displayed in Figures 11 and 12.

DYNAMIC TEST

The purpose of the dynamic test was to measure the impact forces trans-
mitted from the two 3-inch bumps on the test course through the tires and
suspension system into the cargo bed of the test vehicles. The payloads,
tire pressures, and speeds of the trucks were varied to determine trends
in the impact forces.

13
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Figure 11, Typical Accelerometer Readouts for
Truck Type II.
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The following describes dynamic test procedures:

A set of 5 runs (10 runs for truck Type I) were made in both directions
over the test course at tire pressures of 50, 70, and 90 pounds per square
inch (psi) (70 psi for truck Type lII); and at speeds of 20, 30, and 40
miles per hour (mph) for a minimum of 6 loads (8 for truck Type II),

On each one-way run, the vehicles traversed one of the standard 3-inch
bumps resulting in shocks that were recorded by the impact registers at
their respective locations on the cargo beds. These sets of runs resulted
in 10 (20 for truck Type I) impacts being recorded for each load configura-
tion, tire pressure, and speed. Figure 13 is a typical flow chart of the
dynamic testing used for truck Type IL

EMPTY 20
50 -130
1/8
40
2/8
70 -1 30
4/8 40
6/8 20
178 90 - 30
| TIRE PRESSURES 40
FULL [psi)
| SPEEDS
LOAD INCREMENTS (mph)

Figure 13, Flow Chart of Typical Truck Type II
Dynamic Test Procedure.
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VI, ANALYSIS OF DATA

Data collected from the static and dynamic tests performed on truck Type
Il are analyzed in detail in the following chapter. Results from tests on
truck Types I and IlI, which are similar to Type Il, are presented in
Appendixes A and B.

STATIC TEST DATA AND RESULTS

Data collected from the static tests were used to determine the payload
axle loads and the payload axle spring rates (K) of each of the test
vehicles.,

Calculation of the payload axle load involved a simple summation of bend-
ing moments about the convenient axle. Figures 14 through 21 illustrate
the various loading configurations for truck Type II; Figure 22 shows the
basic truck dimensions. Tabulation of the payload axle loads for truck
Type Il is shown on Table II,

The measured vertical deflections of the tires (axles) and the suspension
system during the unloading and loading cycles for truck Type Ilarelisted
in Tables III through VII. The average of the 10 combined tire-spring de-
flections, 5 unloading and 5 loading cycles, was computed and plotted
against their respective payload axle loads, as shown in Figure 23 and 24,
The payload axle spring rate for each single or tandem axle unit (K in
pounds per inch deflection) is the slope of the line plotted.

DYNAMIC TEST DATA AND RESULTS

The impact forces transmitted from the bumps to the cargo bed were
measured in the dynamic tests. The dynamic testing procedures used for
truck Type Il is presented in Table VIII, Basically, the procedure was to
vary the truck speed at certain tire pressures and loading configuration.
Thus, any cne of the variables could be examined in light of the other two.

Figure 25 illustrates the typical trend in the impact forces as a result of

increasing the speed of the test vehicles. A vehicle speed of 30 miles
per hour produced the lowest impact forces for these test vehicles,

17
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TABLE VIII
TRUCK TYPE I, DYNAMIC LOADING AND OPERATIONAL TEST PROCEDURE

Tire Pressure (90, 70, and 50 1lb)

Impact
Register Speed
Location (mph) Load Increment

Over
5th Wheel 20, 30, 40 | Full | 7/8 | 3/4 | 5/8 | 1/2| 3/8 1/4 1/81 0

Midspan

Between 5th
Wheel and g
Semitrailer
Tandem 20, 30, 40 | Full | 7/8 | 3/4 | 5/8 1/2| 3/8 1/4 1/8 | 0

Over
Semitrailer
Tandem 20, 30, 40 | Full | 7/8 | 3/4 | 5/8 1/2| 3/8 1/4 1/8 (0

NOTES:
The variable load and dynamic test conditions were imposed on the vehicle for
five complete circuits of the road course.

Variables:
Three - Tire pressure (90, 70, and 50 1b) i

Nine - Load increments (Full, 7/8, 3/4, 5/8, 1/2, 3/8, 1/4, 1/8, 0)
Three - Speeds (20, 30, and 40 mph)

There were 2,430 readings for three recorders.

Figure 26 shows the variation of the impact forces with increasing tire
pressure. In general, increasing the tire pressure results in larger im-
pact forces transmitted to the cargo bed, Figure 27 shows how the pay-
load axle load affects the impact forces. The middle range of axle loads
produced the lower impact forces, whereas the light or heavy loads pro-
duced the higher impact forces. These results are typical of the impact
forces recorded over the axles of all three test vehicles.

Close examination of the vertical impact forces (g) for the three trucks i
showed that g forces for each of the two bumps developed different magni-

tudes, Although the constructed size of the two bumps was the same, the 1
physical conditions surrounding the bumps, such as approach aprons and i
road grade, caused measurable variations in the g forces transmitted to |
the cargo beds. As a result, the values for each of the trucks were !
divided into Bump 1 and Bump 2 groups., Tables IX, X, and XI show the g :
forces (average of 5 or 10 test runs per g value) from Bump 1 for the ;
various loads, tire pressures, and speeds used for three truck types.
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Figure 25, Impact Forces Versus Truck Speed on Truck
Type II at Full- and One-Half Axle Loads.
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Figure 26, Impact Forces Versus Tire Pressure
on Tractor Axle of Truck Type Il at Full-
and One-Half Axle Loads.
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TABLE IX

VERTICAL IMPACT FORCES (g)
SUSTAINED BY TRUCK TYPE I AT VARIOUS SPFEDS OVER BUMP |

| MNP LN PN

Impact Force (g)
Load of Truck Bed Center of Truck Bed Rear of Truck Bed
Increment Vehicle Speed (mph)
20 30 40 20 30 40 20 30 40
Tire Pressure (50 psi)
0 1,62 | 1,48 | 1,56 2,53 { 1,88 | 1.48 2.98 | 2,48 | 1,70
1/5 1.26 | 1.10 | 1,13 1.84 | 1.72 | 1,42 1.76 | 1.58 | 1.47
2/5 0.80 1.06 | 0.93 0.88 1.06 1.26 1.54 1,42 1.40
3/5 0.52| 1,04 | 0,80 0.48 ;| 0.68 | 1,34 0.92 | 0.88 | 0.80
4/5 0.78 | 0.96 | 0.82 0.40 | 0,42 | 0.40 0.84 | 1,14 | 1,06
5/5 0.49 | 0.60 | 0,36 0.38 0.40 | 0,58 0.80 | 0,88 0.82
Tire Pressure (70 psi)
0 2.24 | 2.44 | 2,08 3.56 2.96 2.68 4,15 | 4,84 3.00
1/5 1.68 | 1,71 | 1,63 1.80 | 1.80 | 2.02 1,76 | 1.80 | 1.72
2/5 0.92 | 1.46 | 0.90 1.13 | 1.48 | 1,84 1,42 | 1.58 | 1,48
3/5 0.74 | 1.22 | 1,05 0.82 | 1.18 § 1,20 1,30 | 1,02 | 1,08
4/5 0.62 | 0.94 | 0.54 0.50 | 0,50 | 0,38 0.82 1.02 1,04
5/5 0.84 | 0,88 | 0,70 0.40 ] 0.93 0.60 0.90 1.36 1.72
Tire Pressure (90 psi
0 2.84 | 2.16 | 2.08 3.32 | 3.00 | 2.68 4,72 | 5.05 | 4,20
1/5 1,92 ] 1,94 | 1,44 1.96 | 1.92 | 2,006 2.24 | 1.74 | 1,51
2/5 1.56 | 2,04 | 1,32 1.46 | 1.50 | 1,52 1,90 | 1.90 | 1.80
3/5 1,26 | 1,84 | 1,14 1.24 | 1.46 | 1,26 1,221 1,18 | 1,02
4/5 0.94 | 1,38 1,08 0.78 0.96 0.73 1.32 1.34 1,22
5/5 0.76 1 1,12 | 0,80 0.71 | 0.94 | 0,74 1,08 ] 1,28 | 1,18
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TABLE X
VERTICAL IMPACT FORCES (g)
SUSTAINED BY TRUCK TYPE Il AT VARIOUS SPEEDS OVER BUMP 1

Impact Force (g)

Load Front of Trailer Center of Trailer Rear of Trailer
Increment Vehicle Speed (mph)
20 30 40 20 30 40 20 30 40
Tire Pressure (50 psi
0 4,96 | 4.60 | 3.95 3,76 | 3.16 | 3,72 5,48 | 4.75| 7.80
1/8 4,00 | 2.92 | 6.16 2.68 | 2,20 | 3,52 2.68 | 3,05] 3.25
1/4 1,72 1.80 | 3,12 3.35 2,68 4,35 2.88 2.55] 3.65
3/8 1,84 | 1,40 | 2.76 2.12 | 1,92 | 2.56 2,80 | 2,04 1,96
1/2 2,36 1.44 | 3,32 2.20 1,32 2,44 1,92 1,681 2,40
3/4 3,08 | 2.56 | 2,80 1.56 | 1.96 | 2.68 1.60 | 1,36} 2.80
7/8 2.28 | 1,25 | 1,56 1.56 | 0,92 | 2.04 | 2,64 | 1.70 ] 3.24
8/8 2.12 1,48 | 1,92 0.44 0,40 1,44 2,60 1.48 | 3.40
Tire Pressure (70 psi
0 4,52 7.10 | 8.16 2.44 ] 3.16 3.96 3.76 5.45 8.04
1/8 8.28 | 7.76 | 7.20 2.48 | 2.96 | 3.04 | 2.84 | 3.36 | 3.60
1/4 3.08 | 3.16 | 4.60 2,60 | 3,76 | 4.80 | 2,75 | 3,50 | 2.92
3/8 5.75 | 5.36 { 5.08 2.36 | 2.25 | 2,56 2,20 | 2.28 ) 2.56
1/2 1.75 1,72 | 2.60 2,70 | 1.92 | 2,04 1,95 | 3,12 | 2,12
3/4 2.96 2.20 | 2,96 2.52 2.56 2.40 3.05 | 2,25 3.45
7/8 7.32 5.45 | 7.44 2,40 1.56 2.16 4,56 2.80 ] 3.95
8/8 5.55 2.56 | 3.80 2.52 1.50 2.32 6.12 2.32 4,75
Tire Pressure (90 psi)
0 3.48 5.15 | 7.35 3.28 3.76 5.20 6.04 | 4,35 8.88
1/8 4,04 5,12 | 6,40 2.76 3.04 4, 44 3.52 3.16 | 3.25
1/4 5.68 3.80 | 6.52 3.36 4,24 5.28 3.44 | 4.10 ] 4.48
3/8 2.95 4,52 { 7.00 2,30 | 2.64 2.80 2,35 2,52 3.55
1/2 3.65 3.56 | 4,24 2.44 | 2.20 2.28 2,30 | 2.64 | 2.32
3/4 2,60 2,30 | 7.20 2.65 2,28 3.08 2.40 | 2.00 | 2.36
7/8 4,25 4,08 | 3.68 1.92 2.40 2.12 2,32 2.08 | 2,72
8/8 2.96 | 3,55 | 4,10 2.16 | 1,48 | 1.80 | 2.68 | 1.80 [ 2,12
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TABLE XI
VERTICAL IMPACT FORCES (g)
SUSTAINED BY TRUCK TYPE Il AT VARIOUS SPEEDS OVER BUMP 1

Impact Force (g)

Load Front of Semitrailer | Center of Semitrailer| Rear of Semitrailer
Increment Vehicle Speed (mph)
20 30 40 20 30 40 20 30 40

Tire Pressure (70 psi)

0 5.28 | 4.36 | 4.20 7.40 | 7.92 | 8.60 | 6.80 | 7.60 | 8.76
1/5 2,60 | 3,24 | 3.52 3.28 | 4,32 | 4.44 5.45 | 5.00 | 5.56
2/5 4,35 | 6.00 | 5,20 2.64 | 3.24 | 3.00 5,04 | 4.50 | 5.00
3/5 3,75 | 1.92 | 1.80 2,24 | 3.68 | 5.60 | 4,15 | 3.40 | 4.40
4/5 3.95 | 3,60 | 2.36 1.96 | 3.45 | 3.24 | 2.55 | 6.80 | 6.95
5/5 5,70 | 8,15 | 6,40 | 2,48 | 2.80 | 2.52 2,30 | 8.40 | 8,10

The g forces resulting from the runs made at 70 pounds per square inch
tire pressure, in general, fell between forces obtained at 50 and 90 psi.
The use of the 50 and 90 psi tire pressures was mainly for information
purposes and did not conflict with the trends obtained at 70 psi. The
largest g forces recorded from the three arbitrarily chosen truck speeds,
20, 30, and 40 mph, at each load increment, was used since this approach
would produce conservative shock index values.

CONSOLIDATION OF STATIC AND DYNAMIC TEST RESULTS

Convenient variable loading of the three trucks with the large concrete
blocks produced a wide variation in the calculated axle loads. Payload
axle loads were used since the empty weights of the trucks were not in-
volved in determining shock indices., Table XII lists the payload axle loads
corresponding to the loading increments for each truck type.

The vertical impact forces, or shock values (g),were plotted against the
calculated axle payloads for the load-carrying axles of the three trucks,
as shown in Figures 28, 29, and 30. These plots show that the measured
shock reaches minimum values through the middle range of the payload
axle loads. Also, when the axles are lightly or heavily loaded, the shock
increases twofold, From these plots, a vertical shock can be determined
for any payload placed on these trucks by knowing the load transmitted to
these load-carrying axles.,
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TABLE XII

PAYLOAD AXLE LOADS FOR
LOAD INCREMENTS USED ON TEST TRUCKS

Load Increment Payload Axle Load*
Fraction of Rated Load (1, 000 1b)
Truck Type I Rear Axle
1/5 2ud
2/5 3.6
3/5 6.5
4/5 8.5
5/5 10.1
Truck Type II Tractor Rear Axle Semitrailer Rear Axle
1/8 1.2 1.3
2/8 2.3 2.5
3/8 35 3.9
4/8 4.7 5, 1
6/8 7.4 7.8
7/8 8.4 9.0
8/8 9.6 10.3
Truck Type III Tractor Rear Axle Semitrailer Rear Axle
1/5 2.6 2.4
2/5 5.2 4,8
3/5 7.6 7.3
4/5 10.0 9.8
5/5 12.5 12, 4

*Refers to single axle on tandem axle truck.

REAR OF TRUCK

Sy -

&

YERTICAL SHOCK el
ﬂ—muﬁgn-rnus

2

Figure 28,

34 5 6 71 8 8§ 10 10 12 13
PAYLOAD AXLE LOAD (1000-1B)

Truck Type I, Vertical Shock Versus
Payload Axle Load.
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Figure 29 shows the results for truck Type II, a tandem-axle tractor,
tandem-axle trailer. The original loading increments were 1/4, 1/2, 3/4,
and 4/4 of the rated load capacity., It was later decided to add 1/8, 3/8,
and 7/8 load increments to supplement the original measured forces, Due
to conditions beyond our control, such as weather, these additional test
runs produced g forces of different magnitude than the original g forces,
especially for the tractor rear axle.

As explained previously, a payload axle spring rate was calculated from
the results of the static test. These axle spring rates are based upon
payload variations; therefore, the.term ''payload axle spring rate in 1, 000
pounds per inch (K)" vertical displacement is used, Table XIII shows the
payload axle spring rates for the load-carrying axles of each truck,

TABLE XIII
PAYLOAD AXLE SPRING RATES
Truck Type Load- Carrying Axle Payload Axle Spring Rate
(1,000 1b/in.)

I Rear Axle 7,400

I Tractor Rear Axle 12,600
Semitrailer Rear Axle 8,600

I Tractor Rear Axle 10,700
Semitrailer Rear Axle 14,800

DEVELOPMENT OF SHOCK INDEX GRAPH

A procedure was devised for relating payload axle spring rate and payload
axle load to the vertical shock that is expected from a vehicle with these
two parameters, Accordingly, a shock index was developed that repre-
sented the range of vertical shocks measured in this test program. This
shock index is based not on test truck configuration but on the payload axle
spring rates of the trucks determined in the static test. Knowing the
spring rate of an axle on a particular truck and the anticipated payload on
that axle, a vertical impact force (g) or a shock index can be determined
uring the information given on Figure 31.

The graph is entered on the horizontal axis at the payload axle spring rate
for the particular truck axle. Use 12,000 pounds per inch as an example.
Proceed straight up to the line corresponding to the payload axle load ex-
pected on that axle, say, 9, 000 pounds, then straight across to the verti-
cal axis to read either the vertical g force, 5g; or the shock index, 2.5.
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Results of the tests on these trucks indicated that at relatively low spring
rates (6, 000 to 3,000 1b/in. ), impact forces transmitted to the cargo were
low (1 to 4g); however, the impact forces increased significantly (4 to 8g)
at the higher spring rates (12, 000 to 15, 000 1b/in). Results also showed
that at a given spring rate as the payload is increased from 0, the impact
forces decreased, providing a softer ride, to some minimum value. How-
ever, increasing the payload even further caused the impact forces to
increase, providing a progressively rougher ride. This trend reversal

is illustrated on Figure 31 by the dashed lines denoting payload axle loads
from 6, 000 pounds to 12, 000 pounds. There was an optimum payload for
all vehicles tested that provided the softest ride for the cargo. This
optimum load can readily be selected from the graph when the payload
axle spring rate for the vehicle is known.

SHOCK INDEX GRAPH

For all ranges of payload, due to the many variables, dynamic behavior,
and variable environment associated with the vehicle-road relationship,
some radical, inexplicable shock values will occur. In the test leading to
the development of thr graph, approximately 20 percent of the recorded
values fall within this category and were accordingly discarded.

When shock to the cargo is of concern the following conclusions can be
drawn, based on the graph (see Figure 31).

High, erratic shock values are most likely to occur with either light or
maximum payloads because at light loads the vehicle springs are rela-
tively stiff, and at very heavy loads "bottoming out' of the springs may
occur. The most erratic results will occur over the fifth wheel area due
to the concentration of load at the kingpin.

The graph indicates that for a relatively soft ride the vehicle payload axle
spring rate should be about 7,000 pounds per inch. For this condition for
an axle payload of 3, 000 pounds, the cargo would most likely not be
subjected to a shock of over 2g, and the shock index rating for the vehicle
would be about 4. 1.

For a vehicle payload axle spring rate of 10, 000 pounds per inch the maxi-
mum expected shock to the cargo should not exceed about 4g for axle pay-
loads of 3, 000 to 9, 000 pounds. This vehicle would have a shock index of
about 3.

For a vehicle payload axle spring rate of 13, 000 pounds per inch the maxi-
mum expected shock to the cargo should not exceed about 6g for axle pay-
loads of 3, 000 to 9, 000 pounds. This vehicle would have a shock index of

about 2. 4.
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The foregoing examples illustrate that the SI provides classification for
vehicle-load combinations and gives a better measure for shock than any
single parameter.

VII, PROCEDURE FOR DETERMINING SHOCK INDEX

The procedure for estimating SI for a specific cargo truck involves two
steps. First, it involves loading and unloading the truck and taking
measurements on how much the cargo bed deflects under one-half and full
payload. Second, it is necessary to know the payload axle load. This can
be determined on a set of portable scales or by calculation. It isneces-
sary that this information be obtained by physical measurements because
of the high variable internal friction in leaf springs, variable stiffness in
tire sidewalls, and general construction of the overall suspension system
of the vehicle. Also, correlation between the manufacturer's spring rate
for a leaf spring of a vehicle cannot be made with the installed spring,
because in the manufacturer's test procedure, the test is performed with-
out center clamps and shackles, and the spring ends are mounted on
rollers so that they are free to move.~ When the SI for a specific make
and model of truck has been determined, it should apply to others of the
same make and model, with the same types of springs and tires.

1. Required information.
a. Vertical deflection at one-half and full payload of truck bed
at rear axle(s) and/or at rear axles of truck-tractor if the vehicle is a
truck-tractor semitrailer combination.

b. Payload axle load causing the vertical deflections.

2. Determination of combined (springs and tires) vertical deflection
at an axle(s).

a. Check tire air pressure, adjust to operating pressure.

b. Position axle(s) on scales; or, if scales are not available,
on a uniformly smooth, level, unyielding surface with vehicle unloaded.

c. Accurately measure the height of the cargo bed on each side
of the truck at the axle(s). Ifvehicle is onscales, note unloaded axle(s)load,.

A/Society of Automotive Engineers (SAE) Handbook, ''Leaf Springs for
Motor Vehicle Suspension, ' Standards Information Reports Recommend-
ed Practices, J510a, p. 600, 1967.
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d.

Use dummy concentrated weights, if available, to simulate

axle(s) payload. Load with center of gravity directly over axle of single-
axle vehicles or midway between tandem axles. If concentrated weights
are not available, use available homogeneous weights and uniformly load
truck bed. Accurately measure the height of the cargo bed on each side
of the truck at the axle(s) (Figure 32). The truck should be loaded and
unloaded several times and an average deflection determined, both at one-
half and full payload.

DETERMINE AVERAGE MAXIMUM PAYLOAD
DEFLECTION AT ONE-HALF
AND FULL PAYLOAD

e,
deflections:

full load.

height.

bed height.

ments.,

—~

Figure 32, Rear View of Truck.

Proceed as follows in order to obtain accurate average

(1) Fully load the truck; measure truck bed height at

(2) Unload to one-half of full load; measure truck bed

(3)  Unload truck; measure truck bed height.

(4) Place one-half of full load on truck; measure truck

(5) Place full load on truck; measure truck bed height.

(6) Repeat above cycle 5 times for a total of 10 measure-
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(7) Make accuracy of measurements within one thirty-
second of an inch.

3. Determination of payload per axle at one-half and full payload.

a. If vehicle is on scales, read recorded weight, subtract
axle(s) unloaded weight; and, if tandem axles, divide by 2.

b. If scales are not available, use one of the following equations
to determine the single axle payload at one-half and full payload (Figure
33).

4, Determination of combined payload spring rate (K) for axle(s).

K = Full payload axle load (lb) - One-half payload axle load (lb)
Average deflection at full - Average deflection at one-half
payload (in. ) payload (in. )

5. Determination of shock index,

Now that Khas beendetermined for the axle(s), the SI can be read directly
from the graph (see Figure 31) or Table XIV, The most accurate reading
can be obtained by using the graph since a table must be made up based on
some arbitrary interval of K. An interval of 500 pounds per inch is used
for Table XIV.

To use the graph, enter the graph with Kon horizontalscale, go vertically
to axle payload for trip, and horizontally to read shock index. The shock
index for each axle should be checked and the lower of the numerical
values should be used for shock index; this will represent the roughest
expected ride on the cargo bed. The shock index can be obtained, at the
same time, for all axle payloads from 0 to 12, 000 pounds. It need be
determined only once for vehicles of the same make and model, with the
same type springs and tires.

To use Table XIV, use the K in the table that most nearly corresponds
numerically to the K determined by physical measurement. The maxi-
mum error in Sl due to using the table will be 0.625; in most cases, the
error will be considerably less. The SI for each axle (if the vehicle is a
truck-tractor-semitrailer combination) should be checked, and the larger
of the numerical values should be used for SI.

6. For example, determine the SI for a two-axle truck-tractor

single-axle semitrailer combination. Payload axle loads for the rear
axle of the tractor and trailer are to be 10, 000 pounds each,
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et AN SEETE

The truck was loaded to one-half and full payload and deflections were
measured, Scales were used to determine the payload axle load on each
axle, The following data were obtained on the trailer axle:

Full payload axle load - 12,288 1b

One-half payload axle load - 6, 123 1b

Average deflection at full payload - 1,127 in,

Average deflection at one-half payload - 0.687 in,

K=12,288 - 6,123 _ 14 000 1b/in.
1,127 - 0.687

Enter Table XIV with K; go vertically to payload axle load that truck is to
transport (10, 000 pounds); horizontally to read shock index, which is
1.50 for a K of 14, 000 pounds and payload axle load of 10, 000 pounds, SI
from Table XIV is 1,50,

This procedure should be used also on the rear axle of the truck-tractor
and the lower of the two SI used as the SI for that truck (with 10, 000~
pound payload axle loads). The SI for all other payload axle loads can be
determined directly from the graph or table using the value of K for the
truck, since K is independent of the payload.
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APPENDIX A

DATA ON TRUCK TYPE I

Data developed during the static and dynamic tests on truck Type Il were
analyzed in detail and presented in the body of the report. Results from
tests on truck Type I, which are similar to truck Type II, are presented
in this appendix. Figures 34through 42 show physical characteristics of
the truck Type I. They also show loading configurations and payload axle
spring rates for the rear axle and typical accelerometer trace of shocks
recorded on the bed of the truck, Tables XV through XXI show the static
vertical measurements at various tire pressures of truck Type I and the
test conditions and the loading arrangements of static and dynamic tests.
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010018 GYW = 23000 LB

Figure 34. Dimensions and Weight, Truck Type L
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Truck Type I,
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Figure 37. Static Test, Three-Fifths and Two-Fifths Load,
Truck Type L.
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Figure 40. Payload Axle Spring Rate (K) for Rear
Axle on Truck Type L.
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Figure 41. Typical Accelerometer Readouts for Truck Type L.
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TABLE XX

TRUCK TYPE I, DYNAMIC LOADING AND

OPERATIONAL TEST PROCEDURE

Tire Pressure (70 1lb)

Impact

Register Speed

Location {mph) Load Increment

At

Bulkhead 20, 30, 40 Full | 4/5| 3/5| 2/5} 1/5
At Center

of Gravity 20, 30, 40 Full | 4/5 | 3/5| 2/5| 1/5
Over Rear

Axle 20, 30, 40 Full | 4/5 | 3/5| 2/5}| 1/5

NOTES:

The variaole load and dynamic test conditions were imposed on the
vehicle for 10 complete circuits of the road course.

Variables:

Three - Tire Pressure (90, 70,and 50 1lb)

Six - Load Increments (Full, 4/5, 3/5, 2/5, 1/5, 0)
Three - Speeds (20, 30, and 40 mph)

There were 3,240 readings for three recorders.
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APPENDIX B

DATA ON TRUCK TYPE III

Data developed during the static and dynamic tests on truck Type Il were
analyzed in detail and presented in the body of the report. Results from
tests on truck Type III, which are similar, are presented in this appendix.
Figures 43 through 52 show physical characteristics of the truck Type IIL
They also show loading configurations and payload axle spring rate for the
rear axle of the tractor and trailer and typical accelerometer trace of
shocks recorded on the bed of the truck. Tables XXII through XXVI show
the static vertical measurements at various tire pressures of truck Type
III and the test conditions and the loading arrangements of static and dy-
namic tests,

VEHICLE CG FULL LOAD 294" —
168" '

331!

4860 LB 4960 LB 9060 L8 4900 LB 5060 LB

D /,
@ IMPACT REGISTERS— @
— 150.5"(L/] | 282.5"(L3) !
) - 433"(L)
Wi = 14396 LB Wy = 13273 LB W3 = 16400 LB
C6(K) - L1}W2 + [L]W3
w123
cafy) = 150:57) (13273 L8] + (433" (16400 L)
4070
C6(X) = 206"

Figure 43, Static Test, Full Load, Center of Gravity
Truck Type LI,
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DEFLECTION (IN.)

Figure 50. Payload Axle Spring Rate (K) for Tractor
Axle on Truck Type IIl.
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Figure 51, Payload Axle Spring Rate (K) for Trailer
Axle on Truck Type IIL

66



-

F"

I

|
1L
_I_l
L1
ER N
I-i1

|
1]
1
i
-
L.
I I

|
<
1'4
L

TR

3

:
o

Aft Accelerometer Trace

Typical Accelerometer

Figure 52,

Readout for Truck Type
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TABLE XXV
TRUCK TYPE III, DYNAMIC LOADING AND
OPERATIONAL TEST PROCEDURE

Tire Pressure (70 lb)

Impact
Register Speed
Leocation (mph) Load Increment

Over
5th Wheel 20, 30, 40 Full { 4/5 3/5 2/5 1/5

Midspan
Between
5th Wheel
and Semi-
trailer Axle 20, 30, 40 Ful| 4/5| 3/5| 2/5 | 1/5

Over

Semitrailer
Axle 20, 30, 40 Full | 4/5 3/5 2/5 1/5

NOTES:
The variable load and dynamic test conditions were imposed on the
vehicle for five complete circuits of the road course,

Variables:

One - Tire Pressure (70 1b)
Six - Load Increments (Full, 4/5, 3/5, 2/5, 1/5, 0)
Three - Speed (20, 30, 40)

There were 540 readings for three recorders.
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